

Math 1B - Section 3392 Calculus II TR 5:15-7:45 MSTC 151

Geoff Hagopian

ghagopian@collegeofthedesert.edu geofhagopian.net Math 12 Office Hours: MTWR 9:45-11 (760) 776-7223

This syllabus is subject to a time rate of change.

Course Description: This course is a study of the meaning, methods and applications of integration and infinite series. Topics include the definition of the definite integral, the Fundamental Theorem of Calculus, techniques of integration, applications of integration, first order separable differential equations, modeling exponential growth and decay, infinite series and approximation of functions using Taylor series with remainder.

Prerequisite: Math 1A.

Note: A minimum grade of C is required in this course to progress to 2A, 2B or 2C. **Credit Hours:** 5

Text(s): Calculus, Early Transcendentals, 7th Edition Author: James Stewart; **ISBN-13**: 978-0-538-49790-9

Course Objectives:

At the completion of this course, students will be able to:

- 1. Construct antiderivatives graphically and numerically (using 2nd form of the Fundamental Theorem of Calculus).
- 2. Find antiderivatives analytically using substitution, by parts, integral tables, and partial fractions and use them to find a definite integral by the 1st form of the Fundamental Theorem of Calculus.
- 3. Approximate the definite integral numerically using midpoint, trapezoid and Simpson's rule and perform error analysis of these approximations.
- 4. Apply definite integrals to solve problems in geometry, science, probability, and social science.
- 5. Evaluate improper integrals.
- 6. Solve first order separable differential equations.
- 7. Model exponential growth and decay with appropriate differential equations.
- 8. Construct Taylor Polynomials as local approximations for transcendental functions.
- 9. Introduction to methods of proof by induction.
- 10. Determine intervals of convergence for infinite series and error bounds for Taylor Series approximations.

Grade Distribution:

Projects	20%
Quizzes	10%
Chapter Tests	45%
Final Exam	25%

Letter Grade Distribution:

≥ 90.00	Α	70.00 - 79.99	С
80.00 - 89.99	В	60.00 - 69.99	D
		≤ 59.99	\mathbf{F}

Course Policies:

• Homework

 Homework will be assigned regularly but there is no one available to read your work on a regular basis, so you will use the online homework system at WebAssign.net. To get started with WebAssign, go to WebAssign.net and click the "I have a class key" button. On the next page enter institution code dccd.cc.ca and 3367 2533 are the two four-digit numbers that constitute the class key.

• Calculators and Computers

- Computer algebra systems are encouraged, and may even be required for some assignments. Generally, however, use a CAS only as a confirmation of what you can or cannot do with pencil and paper.
- You will need scientific calculator for some exams, but graphing calculators and calculators with CAS are not allowed.

• Grades

- Grades in the **C** range represent performance that **meets minimal expectations**; Grades in the **B** range represent performance that is **substantially better** than the expectations; Grades in the **A** range represent work that is **excellent**.

• Attendance and Absences

- Attendance is expected and will be noted. If you're not there, you missed it.
- Students are responsible for all missed work, regardless of the reason for absence. It is also the absentee's responsibility to get all missing notes or materials.

Academic Honesty Policy

In addition to skills and knowledge, College of the Desert aims to teach students appropriate ethical and professional standards of conduct. The college catalog specifies that students are expected to "Integrate universally accepted values such as honesty, responsibility, respect, fairness, courage and compassion into judgments and decision-making." and that, "Students are expected to act in an honest and trustworthy manner. Work performed on examinations or other forms of evaluation must represent an individual's own work, knowledge and experience of the subject matter. Students are expected to follow the classroom rules established by each instructor." Any attempt to deceive a faculty member or to help another student to do so will be considered a violation of this standard.

Tentative Course Outline:

The weekly coverage might change as it depends on the progress of the class. However, you must keep up with the reading assignments.

Week	Content
Week 1	• §5.1-5.4: The Definite and Indefinite Integrals, Fundamental Theorem and Net Change.
Week 2	• §5.5-6.2: Substitution, Area and Volume
Week 3	• Review and Test 1
Week 4	• §6.3-6.4 Volume of Washers and Shells. Work.
Week 5	§6.5-7.1: Average Value and Integration by Parts.Applied Project
Week 6	• Review and Test 2
Week 7	• §7.2-7.4 Integration Techniques.
Week 8	• §7.5-7.8 Tables, CAS and Improper Integrals
Week 9	• Review and Chapter 7 Test
Week 10	• §8.1-8.5: More Applications
Week 11	• 10.1 Integrals with Polar and Parametric Equations
Week 12	 Chapters 8 & 10 Test §11.1-11.4 Infinite Series and Sequences Integral Test and Estimation, Comparison.
Week 13	§11.5-11.8: Altegernating Series and Convergence Tests.Introduction to Power Series.
Week 14	• §11.9-11.11: Taylor and Maclaurin Series.
Week 15	Chapter 11 Test.Review for final exam.
Week 16	• Final Exam.